Evolution of unicast routing protocols in data networks

Carles Seguí
Agustín Zaballos
Xavier Cadenas
Josep M. Selga
History of unicast routing

- Late 1950s – Early 1960s take place the first routing algorithms that find the shortest path between two points
 - Bellman-Ford algorithm
 - Dijkstra algorithm
- 1969 → ARPANET uses Bellman-Ford as its routing algorithm → Today’s RIP
 - In 1980 it adopts OSPF as its routing protocol, based on Dijkstra’s algorithm
- Shortest Path Routing evolution can be splitted in two branches
 - Disjoint Shortest Path Routing
 - Multipath Routing
- Simultaneously with SP Routing, some studies about flow optimization took place → Optimal Routing
 - Fratta (1973) introduced the “Flow Desviation Method” for ARPANET
The Shortest Path is found with static metrics
- Bellman-Ford is based on the number of hops between source and destination (RIP)
- Dijkstra is based on the cost of a link (OSPF, IS-IS)
- EIGRP is based on DUAL algorithm and rely on bandwidth and delay by defaults of the links.

If there’s a bottleneck in the SP, the algorithm does not change the path to another one.
SP routing: Disjoint path Routing

- Disjoint Path Routing provides a pair of minimum total length independent paths to increase the reliability in communications.
- Some proposals try to find “k” independent paths but they turn into an NP-Complete algorithm.
- Some important studies are from:
 - Ogier
 - Aumenting path technique
 - Sidhu
 - Message distribution algorithm to mark the disjoint paths
 - Orda
 - Try to find QoS disjoint paths → NP-Complete
The disjoint path routing looks for two independent paths

- With the augmenting path, the SP could not be one of these paths
- Sometimes it is not possible to find disjoint paths in a network
SP Routing: Multipath Routing

- Multipath routing finds “k” best paths for a destination.
- The information is load-balanced among these paths → Average network delay is reduced
- Important work made by Garcia Luna:
 - He uses LFI (Loop-Free Invariants) to find “k” loop-free paths with MDVA, Multipath Distance Vector Algorithm (2001)
 - Based on Bellman-Ford algorithm and DUAL
 - Prior to MDVA, Garcia Luna concluded some other multipath algorithms
SP Routing: Multipath Routing

- The load-balancing could be made in different ways
 - Round Robin Load Balancing → Each packet takes a path to the destination
 - Per Flow Load Balancing → Each TCP flow takes a source-destination path
 - Important Studies of F. Kelly.
Optimal Routing

- Optimal routing optimizes the average global delay of a network instead of finding the shortest path to a destination.
- Efficient way of designing a network
- Not adequate for real networks → Slow convergence and dependence on global parameters, sometimes difficult to know a priori.
- Important studies of Gallager (1977) → Proposes the first distributed optimal routing algorithm.
- Recent studies simplifies Gallager formulation for real-networks
 - Aproximation for Bellman-Ford Networks → NEAR-OPT (1999)
 - It uses Diffusing computation
 - Aproximation for Dijkstra networks → MPDA (1999)
 - Approximation made with the use of LFI (Loop-Free Invariants)
Optimal routing find the best combination of paths that minimizes the general delay of the network

\[D_T = \sum_{i,k} D_{ik} (f_{ik}) \]
Constrained Routing

- Adds QoS constraints to routing calculations
 - Link optimization \rightarrow concave metrics (BW)
 - WSP, SWP, MRBHP routing problems
 - Path optimization \rightarrow additive and multiplicative metrics (delay, reliability)
 - Evolve from the optimal routing but they only work with one path instead of the whole network.
- Multi Constrained Routing \rightarrow Combination of metrics.
 - Problem NP-Complete \rightarrow Heuristic algorithms or approximations have to be used
 - Independent metrics could have polynomial solution (i.e. BW + Delay)
- Bellman-Ford and Dijkstra implement a constrained version of their algorithms
 - Constrained Bellman-Ford (CBF) \rightarrow Not good for big networks
 - QOSPF \rightarrow RFC2676
Constrained Routing

- With BW bottleneck and minimum delay as QoS
- Requesting parameters, the path shown in the figure is chosen
 - It presents the least bottleneck restrictions → 512k
 - It presents the least delay → 3.5s
NP-Complete Table

<table>
<thead>
<tr>
<th>Routing Problem</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Link-Constraint path-optimization</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Link-constraint link-optimization</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Multi-link-constrained routing</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Link-constrained path-constrained routing</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Path-constrained link-optimization routing</td>
<td>Polynomial</td>
</tr>
<tr>
<td>Path-constrained path-optimization</td>
<td>NP-Complete</td>
</tr>
<tr>
<td>Multi-path-constrained routing</td>
<td>NP-Complete</td>
</tr>
</tbody>
</table>
Ad-Hoc routing

- Ad hoc networks are formed by a collection of dynamic nodes with limited transmission range. Normally more than one will be needed for a node to transmit to another node.
 - Great number of Ad-Hoc routing protocols

- MANET proactive protocols
 - Maintain a fresh list of destinations and their routes.
 - More congestion in the network due to routing traffic
 - i.e. OLSR, DSDV

- MANET Reactive protocols
 - Maintain routes only between nodes that need to communicate
 - DSR → on-demand Dynamic Source Routing protocol
 - TORA → Provide multiple loop-free routes to a destination
 - AODV → Hop by hop routing protocol. Modified DSR protocol with some features of DSDV protocol
Ad-hoc Routing
Conclusions

- There are two different ways to find the best route to a destination
 - The shortest-path route → Considers static metrics and in recent years QoS Requests such as BW, delay, jitter, reliability; all of them in a dynamic way
 - The optimal route → The path or paths that minimize the global delay of the network

- Also SP routing is being studied in two different ways
 - Disjoint paths routing → Very complex for real-time networks
 - Multipath routing → The best option in nowadays networks

- QoS is an important fact in today networks
 - Most of the QoS routing proposals are NP-Complete and need a heuristic version or some modifications for an approximated solution