A Secure Low-cost WLAN Localization Scheme

Santosh Pandey (1), Farooq Anjum (2), Byungsuk Kim (2) and Prathima Agrawal (1)

(1) Auburn University, USA
(2) Telcordia Technologies, USA
Motivation

Location based services are expected to be the next “killer” application. Examples of applications using location information are:

- Emergency service such as E911.
- Location based access control.
- Implementation of company policies.
- Improve the performance of mesh networks or 802.11 MAC using location information of network clients.
Motivation

An adversary (attacker or intruder) may try to deceive the localization system by using special hardware, power variation etc.

A localization scheme that will be resilient against such attacks to provide correct location information of the end user is hence needed. Such schemes are called secure localization schemes.

The objective of this work is to introduce a low-cost secure localization scheme for WLAN and compare its performance with existing signal strength (SS) based scheme. We assume a simple threat model; a single attacker with no advance hardware.
Scheme Description

Figure 1: Architecture of proposed localization system
Memes \(N_{ij} \) are transmitted at different power levels by neighboring APs.

\[
N_{ij} = E_k\{N_o|AP_i|P_j\}
\]

- \(N_{ij} \): Message corresponding to the \(j^{th} \) power level \((P_j) \) from the \(i^{th} \) AP \((AP_i) \),
- \(N_o \): Nonce
Preliminary measurements

- Different power levels ⇒ Sufficiently different transmission ranges.
- The transmission range is almost circular in open spaces and irregularly shaped in closed spaces.
- ‘k out of N’ scheme: For different values of k and N, k=60% of N gave a sharp cut off.
- Boundary varied over discrete time periods throughout the day and not instantaneously.
Secure Location Algorithm

Figure 3: Timeline
Secure Location Algorithm

Let $N_t = \text{the number of attempts}$,
$N_c = \text{the maximum number of trials to locate a user}$
and
$N(L_p) = \text{the number of successive values of } L_p$.

- If $N_t \leq N_c$ and $N(L_p) < \delta$ then $N_t = N_t + 1$
- else if $N_t \leq N_c$ and $N(L_p) \geq \delta$ then the user
 location is L_p
- else reinitiate query.
Implementation

Figure 4: Testbed setup
Implementation

- The testbed was implemented using Python in an area of about 150 x 120 ft. (18,000 sq. ft.).

- The user device in testbed was a Linux laptop with Prism II wireless card.

- HostAP drivers were employed to convert Linux based laptops into APs.

- Wireless links were used instead of the backbone wired links between APC and APs.
The APC is also a Linux based laptop and can control several parameters such as:

- The number of APs to involve in localization.
- The number of transmission power levels for each AP.
- The number (N) of sub-messages to be transmitted.
- The power level at which each sub-message is to be transmitted. Different APs can transmit at completely different power levels.
- Other parameters such as k, N_c, δ which are decided based on the policies at the APC.
Performance Analysis

Figure 5: Test locations and AP configurations
Performance Analysis

Figure 6: Sub-regions for AP configuration 1
Figure 7: Percentage correct location for SS, message (LMS) and message (exact) with $N_c=3$, $\delta=2$ (AP configuration 1)
Performance Analysis

Figure 8: Percentage correct estimates for the test setup with AP configuration 1 and 2 for the exact message based scheme.
Performance Analysis

- The accuracy is affected by AP placement.
- The value of δ and N_c decide the trade-off between security and performance of our scheme.
- A single localization query could be completed in about 1.5 secs.
- The throughput at AP dropped marginally from 4.8 Mbps to 4.7 Mbps due to localization overhead.
Security Features

Unlike the SS based scheme, the attacker cannot build a lookup table in this case. The APC chooses the set of power level and corresponding unique set of messages for each AP for each localization query.

The APs transmit messages using spoofed MAC addresses and hence it is difficult for the attacker to identify the message source.

Further, even with the lookup table, the probability of dropping appropriate messages for location spoofing was found to be low, especially given the fact that all these messages are encrypted.
Conclusion

The proposed scheme has several attractive security properties and performs better than existing SS based localization schemes.

Future work:

- Combine with SS scheme.
- AP placements and “message map” generation.
- Avoid unnecessary handoffs.
- Distributed APC.