A Novel High-Performance Transport Protocol Considering Fairness with TCP in Long-distance High-speed Network

Graduate School of Information Science and Technology, Osaka University
Cybermedia Center, Osaka University
JGNII Osaka Research Center, NiCT

Fumiaki TAMESHIGE Ken-ichi BABA
Masaaki NORO Shinji SHIMOJO
Research Backgrounds

- Network bandwidth and delay is increasing rapidly
 - 10Gbps is common in high speed network by DWDM
- New applications transfer Large Volume Data
 - Handling more than terabyte in DataGrid
- TCP becomes inefficiency in LFN
 - LFN; Long Fat pipe Network
 - Because of Large Bandwidth Delay Product
- New Advanced Transport Protocol is required
High-Speed Transport Protocol (1/2)

- **GridFTP**
 - High-Throughput with Parallel TCP connection
 - Difficult to set the adequate parameter

- **HighSpeed TCP, Scalable TCP, Fast TCP**
 - Improve AIMD window control in TCP
 - Difficult to realize fairness to TCP

- **XCP**
 - New congestion control protocol involve router
 - It costs much costs in the modification of network

- **RBUDP, TSUNAMI**
 - Rate-based reliable UDP
 - Protocols for dedicated network
UDT (UDP based Data Transfer)

- Application level protocol for volume data transfer
- Over UDP with reliability and congestion control
- Receiver sends ACK and NAK periodically to inform the sender of lost information
- UDT can share bandwidth almost equally to TCP in small network; eg 100Mbps/10ms

Problem of UDT

- Basic performance and Impact of TCP do not investigate fully
- A lot of packet losses may occur when multiple UDT flows coexist in the same path
Research Target

- **Goal**
 - To realize effective high-speed data transfer in LFN
 - Prevent the influence to other competitive flow such as TCP
 - Stable high Throughput with Volume data flows

- **Approach**
 1. **UDT-g;** A new protocol in End node side
 2. **RED-i;** Improvement of RED in network side

Diagram:
- TCP such as Web
- Volume Data Flow
Data Transfer by UDT

- Bandwidth Estimation by Packet Pair
 - Data packets are sent periodically back to back
 - Receiver measures the interval of arrival packets
 - Packet pair estimates the link capacity in non-congestion

- Rate control and Flow control
 - Rate control with adjusting the interval of sending packet
 - Approaching the estimate bandwidth by Decreasing AIMD
 - Window flow control according to arrival rate and RTT
Basic property and Problem of UDT

- UDT can use up link capacity in spite of number of flow
- Packet loss probability increases rapidly as the increase in the number of UDT flow
- Each UDT flows estimate more than actual available bandwidth, so UDT is aggressive to other flows
Proposed Control Method
combined approach; UDT-g and RED-i

UDT-g in End node side
Estimating Available Bandwidth
Stable Rate Control

RED-i in network side
Improving packet loss probability
Prevent the increasing of queuing delay

Volume data flows
New Bandwidth Estimation in UDT-g

- **Conventional**: UDT
 - EWMA calculations with low constant smoothing value
 - Overestimate bandwidth by packet pair
 - Delay congestion detection in long-distance network

- **Proposal**: UDT with gentle Bandwidth Estimation
 - To control estimate bandwidth and proper rate control
 - UDT-g compare the average value with current measurements
 - Calculation lower value in congested network on purpose
 - Reduce aggressive packet sending in congestion
 - \(\alpha \) decide trade-off between efficiency and fairness

```plaintext
if (ave_bw <\= curr_bw)
    ave_bw = ave_bw*0.875 + curr_bw*0.125;
else
    ave_bw = ave_bw*(1-\( \alpha \)) + curr_bw*\( \alpha \); (0.125<\( \alpha \)<1)
```
Relationship between UDT-g and Rate control with Decreasing AIMD

- Estimate Available Bandwidth rather than Link Capacity
 - UDT-g enable to control differences between sending rate and estimate Bandwidth

Rate control algorithm in UDT

UDT-g can inhibit range of increasing rate and band of fluctuation

Stable rate control in congestion
Queue mechanism of the router

- **Drop Tail**: widely implemented with FIFO queue
 - Consecutive packet loss in congestion
 - Difficult to set queue size in LFN

- **RED**: Random Early Detection
 - Dropping packet probabilistically before buffer overflow
 - Keep average queue size small, improve fairness among flows

Prevent consecutive packet drop by using RED in LFN

Improvement of packet loss probability & queuing delay
Improvements of RED

- Conventional: RED (Random Early Detection)
 - RED cannot drop packet in appropriate manner with average queue size
 - Large differences between average and instantaneous queue size
 - Actual queue size increase or decrease drastically in LFN

- Proposal: RED based instantaneous queue length
 - RED-i expects random packet drop even if in long-distance network
 - RED-i can react drastic changes of queue size and is sensitive to congestion
Performance Evaluation
multiple volume data flows

- High performance volume data transfer in LFN
 - Intercontinental volume data transfer over 1Gbps
 - more than terabyte class;
 - Relatively small number of end node; e.g. 1~10

- Performance measure
 - Characteristic of estimate bandwidth in volume data flow
 - Characteristic of packet loss probability

Simulation model

Volume data flows

5flow

Simulation model

BW: 1Gbps
RTT: 100ms

RED-i

UDT-g
Multiple Volume data flows in LFN

- **UDT-g**
 - Controls excess estimate bandwidth and calculates proximity available bandwidth

- **RED-i**
 - Reduces average queue size compared with DT
 - Improves packet loss probability when multiple flows coexist

![Graph showing estimated bandwidth over time and loss probability against number of flows](image-url)
Influences of TCP flows

- Competitive TCP flow
 - Long lived TCP: FTP flow
 - Short lived TCP: HTTP flow
- Performance measure
 - Utilization of Bandwidth
 - TCP throughput
 - Response time of Web document file

BW : 1Gbps
RTT: 100ms
FTP flow and Volume data flow

<table>
<thead>
<tr>
<th>Method</th>
<th>Volume Data Utilization</th>
<th>FTP Flow Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_DT</td>
<td>U_RED-a</td>
<td>U_RED-i</td>
</tr>
<tr>
<td>U_g_DT</td>
<td>U_g_RED-a</td>
<td>U_g_RED-i</td>
</tr>
<tr>
<td>TCP</td>
<td>TCP-c</td>
<td></td>
</tr>
</tbody>
</table>

Proposal method

Conventional method

Bandwidth Utilization
HTTP flow and Volume data flow

Conventional method

Proposal method

Loss probability

Request Time

Method

UDT
UDT-g
TCP
Conclusion

- Effective Volume data transfer in LFN
 - TCP cannot fill up with bandwidth

- Proposed approach; UDT-g and RED-i
 - New Bandwidth Estimation to realize stable rate control in congested network
 - Improvement of packet loss probability and control queue size in bottleneck link

- Feature work
 - Further investigation of effective high volume data transfer and active queue management in LFN