Evaluating Wireless LAN Access Methods in Presence of Transmission Errors

IEEE INFOCOM 2006, Poster session

Elena Lopez-Aguilera
Martin Heusse
Franck Rousseau
Andrzej Duda
Jordi Casademont
Outline

- Introduction
- Principles of chosen Access Methods
- Simulation environment
- System performance
- Conclusions
Introduction

- 1997: IEEE defines the first standard IEEE 802.11 for Wireless Local Area Networks
 - Successive variants have increased the nominal bit rate: IEEE 802.11 b/g/a
 - The MAC layer remains unchanged
 - Much research effort spent on improving MAC performance
Introduction

- IEEE 802.11 Distributed Coordination Function
 - Before initiating a transmission, a station senses the channel during a DIFS Time:
 - the medium is sensed idle → transmission allowed
 - the medium is sensed busy → next attempt of transmission at DIFS + backoff time
 - Backoff time: integer number of time slots distributed uniformly in [0, CW-1]
 - After each data frame successfully received, the receiver transmits an ACK after a SIFS Time
Chosen Access Methods

- Different MAC proposals for improving IEEE 802.11 Wireless LANs
 - Slow Decrease
 - Asymptotically Optimal Backoff (AOB)
 - Idle Sense
Principles of chosen Access Methods

- **Slow Decrease**
 - Objective: adapting CW of each station to the current network congestion level
 - After each successful transmission:

 $$CW_{new} = \max(CW_{min}, 2^{-g} CW_{old})$$

 - the slowest decrease, which achieves the best performance, for

 $g=1 \rightarrow CW_{new} = 0.5 \cdot CW_{old}$

 - Preserves the exponential backoff mechanism of IEEE 802.11 DCF
Principles of chosen Access Methods

- **Asymptotically Optimal Backoff (AOB)**
 - Each host computes the *Probability of Transmission*:
 \[PT = 1 - \min\left(1, \frac{SU}{SU_{opt}}\right)^{Na} \]
 - *Na*: Number of attempts for the transmission of a frame
 - *Slot Utilization (SU)*:
 \[SU = \frac{\text{Num_Busy_Slots}}{\text{Num_Available_Slots}} \]
 - If the transmission is rescheduled, a new backoff interval is computed
 - AOB preserves the exponential backoff mechanism of IEEE 802.11 DCF
Principles of chosen Access Methods

- **Idle Sense**
 - Each host estimates the number of consecutive *idle slots* between 2 transmission attempts
 - By comparing the estimate with a target value, hosts adjust their CW using AIMD principle
 - Contending hosts do not perform the exponential backoff mechanism of IEEE 802.11 DCF

- Up to now, the different proposals have been compared under ideal channel conditions
 - Objective: Performance analysis of the different proposals in adverse transmission conditions

LSR-IMAG 8
Simulation environment

- Simulation parameters
 - Physical layer of IEEE 802.11g
 - 1 BSS: every station subject to the same BER
 - $FER = 1 - (1 - BER)^l$
 - FER: Frame error ratio; l: frame size in bits
 - Payload size of 1500 bytes and transmission rate of 54 Mbps
 - Greedy hosts
System performance

- Aggregate Throughput vs. number of stations
 - **BER=10^{-5}, FER_{\text{Data}}=12\%, FER_{\text{ACK}}=0.65\%**

 - Throughput gain with Idle Sense (%):
 - 3.9 % for 10 stations
 - 35.6 % for 100 stations

IEEE 802.11 DCF
Idle Sense
Slow decrease
AOB
System performance

- Number of idle slots vs. number of stations
 - BER=10^{-5}, FER_{Data}=12\%, FER_{ACK}=0.65\%
System performance

- Channel Access Fairness: Jain Index
 - Number of stations = 25, BER=10^{-5}, FER_{Data}=12\%, FER_{ACK}=0.65\%
System performance

- **AOB** and *Idle Sense* provide significant improvement of the throughput performance
- **Idle Sense**
 - number of *idle slots* closer to the *target* than **AOB**
 - better *Channel Access Fairness*
System performance

- Aggregate Throughput vs. number of stations
 - BER=10^{-4}, $\text{FER}_{\text{Data}}=72\%$, $\text{FER}_{\text{ACK}}=6.4\%$

 - Throughput gain with Idle Sense (%):
 - 127% for 2 stations
 - 60.3% for 4 stations
 - 15.4% for 10 stations
 - 3.6% for 20 stations
System performance

- Number of idle slots vs. number of stations
 - $\text{BER}=10^{-4}$, $\text{FER}_{\text{Data}}=72\%$, $\text{FER}_{\text{ACK}}=6.4\%$

![Graph showing number of idle slots vs. number of stations](image)
System performance

- Fairness: Jain Index

 Number of stations = 25, BER=10^{-4}, FER_{Data}=72\%, FER_{ACK}=6.4\%
System performance

- **Idle Sense**
 - the best overall throughput performance
 - number of *idle slots* closer to the *target*: it does not perform the *exponential backoff algorithm*
 - better *Channel Access Fairness*

- **Slow Decrease and AOB:**
 - do not improve the IEEE 802.11 DCF performance
 - perform the exponential backoff after collisions and frames losses
Conclusions

- Evaluation of different MAC proposals for IEEE 802.11 Wireless LAN in adverse transmission conditions
 - Slow Decrease
 - Asymptotically Optimal Backoff
 - Idle Sense
- Idle Sense does not use the *exponential backoff algorithm*
 - number of *idle slots* closer to the target value
 - higher throughput
 - better channel access fairness
- Next steps
 - Cells composed of stations subject to different BER values
 - Stations working at different transmission rates
 - Multicell environments